1 Online appendix (not for publication)

1.1 Appendix A: Proof of Proposition 2.1

Proof of Proposition 2.1. We first derive the implementability condition. Define the ArrowDebreu price $q_{t}^{0} \equiv \sum_{i=0}^{t-1} R_{i}^{-1}$ for $t \geq 1$, with the numeraire $q_{0}^{0}=1$. From the consumer's first order conditions $u_{c}(t)=\lambda_{t}$ and $\frac{\lambda_{t}}{R_{t}}=\beta \lambda_{t+1}$, we have

$$
\begin{equation*}
q_{t}^{0}=\beta^{t} \frac{u_{c}(t)}{u_{c}(0)} . \tag{1}
\end{equation*}
$$

Iterating the household's flow budget constraint from the time 0 , we obtain the present-value budget constraint that

$$
\begin{equation*}
b_{0}=\sum_{t=0}^{\infty} q_{t}^{0}\{c_{t}-\left(1-\tau_{t}^{n}\right) w_{t} n_{t}+\underbrace{k_{t+1}-\left[\left(1-\tau_{t}^{k}\right) r_{t}+1-\delta\right] k_{t}}_{\equiv x_{t}}\}+\lim _{T \rightarrow \infty} q_{t}^{0} b_{T} \tag{2}
\end{equation*}
$$

The term $\sum_{t=0}^{\infty} q_{t}^{0} x_{t}$ in (2) is derived as

$$
\begin{align*}
& \sum_{t=0}^{\infty} q_{t}^{0} x_{t} \tag{3}\\
& =\sum_{t=0}^{\infty} q_{t}^{0}\left\{k_{t+1}-\left[\left(1-\tau_{t}^{k}\right) r_{t}+1-\delta\right] k_{t}\right\} \\
& =\lim _{T \rightarrow \infty} \sum_{t=0}^{T} q_{t}^{0}\left\{k_{t+1}-\left[\left(1-\tau_{t}^{k}\right) r_{t}+1-\delta\right] k_{t}\right\} \\
& =\lim _{T \rightarrow \infty}\left\{\sum_{t=0}^{T} q_{t}^{0} k_{t+1}-\sum_{t=1}^{T} q_{t}^{0}\left[\left(1-\tau_{t}^{k}\right) r_{t}+1-\delta\right] k_{t}\right\}-\left[\left(1-\tau_{0}^{k}\right) r_{0}+1-\delta\right] k_{0} \\
& =\lim _{T \rightarrow \infty} \sum_{t=0}^{T-1}\left\{q_{t}^{0}-q_{t+1}^{0}\left[\left(1-\tau_{t+1}^{k}\right) r_{t+1}+1-\delta\right]\right\} k_{t+1}-\left[\left(1-\tau_{0}^{k}\right) r_{0}+1-\delta\right] k_{0}+\lim _{T \rightarrow \infty} q_{T}^{0} k_{T+1} \\
& =\sum_{t=0}^{\infty}\left\{q_{t}^{0}-q_{t+1}^{0}\left[\left(1-\tau_{t+1}^{k}\right) r_{t+1}+1-\delta\right]\right\} k_{t+1}-\left[\left(1-\tau_{0}^{k}\right) r_{0}+1-\delta\right] k_{0}+\lim _{T \rightarrow \infty} q_{T}^{0} k_{T+1}
\end{align*}
$$

Substituting $u_{c}(t)=\lambda_{t}$ and $\frac{\lambda_{t}}{R_{t}}=\beta \lambda_{t+1}$ in the modified no-arbitrage condition leads to:

$$
\begin{equation*}
R_{t}-\left[\left(1-\tau_{t+1}^{k}\right) r_{t+1}+1-\delta_{k}\right]=\frac{u_{k}(t+1)}{u_{c}(t+1)} \tag{4}
\end{equation*}
$$

Multiplying both sides of (4) with q_{t+1}^{0} and using the definition of the Arrow-Debreu price, we have

$$
\begin{equation*}
q_{t}^{0}-q_{t+1}^{0}\left[\left(1-\tau_{t+1}^{k}\right) r_{t+1}+1-\delta_{k}\right]=q_{t+1}^{0} \frac{u_{k}(t+1)}{u_{c}(t+1)} . \tag{5}
\end{equation*}
$$

Plugging (5) in the term (3) gives rise to

$$
\begin{equation*}
\sum_{t=0}^{\infty} q_{t}^{0} x_{t}=\sum_{t=0}^{\infty} q_{t+1}^{0} \frac{u_{k}(t+1)}{u_{c}(t+1)} k_{t+1}-\left[\left(1-\tau_{0}^{k}\right) r_{0}+1-\delta\right] k_{0}+\lim _{T \rightarrow \infty} q_{T}^{0} k_{T+1} \tag{6}
\end{equation*}
$$

Substituting (6) into equation (2) and imposing the following two transversality conditions

$$
\lim _{T \rightarrow \infty} q_{t}^{0} b_{T}=0, \lim _{T \rightarrow \infty} q_{T}^{0} k_{T+1}=0
$$

we obtain the present-value budget constraint of the representative consumer

$$
\begin{equation*}
\sum_{t=0}^{\infty}\left[q_{t}^{0} c_{t}+q_{t+1}^{0} \frac{u_{k}(t+1)}{u_{c}(t+1)} k_{t+1}\right]=\sum_{t=0}^{\infty} q_{t}^{0}\left(1-\tau_{t}^{n}\right) w_{t} n_{t}+\left[\left(1-\tau_{0}^{k}\right) r_{0}+1-\delta\right] k_{0}+b_{0} \tag{7}
\end{equation*}
$$

Substituting the price equations (1) and $\frac{u_{l}(t)}{u_{c}(t)}=\left(1-\tau_{t}^{n}\right) w_{t}$ into (7) and rearranging, we have the implementability condition:

$$
\begin{equation*}
\sum_{t=0}^{\infty} \beta^{t}\left[u_{c}(t) c_{t}-u_{l}(t) n_{t}+u_{k}(t) k_{t}\right]=u_{c}(0)\left\{\left[\left(1-\tau_{0}^{k}\right) r_{0}+1-\delta_{k}\right] k_{0}+b_{0}\right\}+u_{k}(0) k_{0} \equiv \widetilde{A}_{1} \tag{8}
\end{equation*}
$$

Secondly, to solve the Ramsey problem, we form the Lagrangian

$$
J=\sum_{t=0}^{\infty} \beta^{t}\left\{U(t)+\theta_{t}\left[F\left(k_{t}, n_{t}\right)-c_{t}-g_{t}-k_{t+1}+\left(1-\delta_{k}\right) k_{t}\right]\right\}-\Phi \widetilde{A}_{1} .
$$

Note that

$$
U(t) \equiv U\left(c_{t}, n_{t}, k_{t}, \Phi\right) \equiv u\left(c_{t}, 1-n_{t}, k_{t}\right)+\Phi\left[u_{c}(t) c_{t}-u_{l}(t) n_{t}+u_{k}(t) k_{t}\right]
$$

where Φ is the Lagrangian multiplier w.r.t the IMC and $\left\{\theta_{t}\right\}_{t=0}^{\infty}$ is a sequence of Lagrangian multipliers. The first order conditions are

$$
\begin{gather*}
c_{t}: \quad U_{c}(t)=\theta_{t}, t \geq 1 \tag{9}\\
k_{t+1}: \quad \theta_{t}=\beta\left\{U_{k}(t+1)+\theta_{t+1}\left[F_{k}(t+1)+1-\delta_{k}\right]\right\}, t \geq 0 \tag{10}\\
n_{t}:-U_{n}(t)=\theta_{t} F_{n}(t), t \geq 1 \tag{11}
\end{gather*}
$$

where

$$
\begin{aligned}
U_{c}(t) & =u_{c}(t)+\Phi\left[u_{c c}(t) c_{t}+u_{c}(t)-u_{l c}(t) n_{t}+u_{k c}(t) k_{t}\right] \\
U_{n}(t) & =-u_{l}(t)+\Phi\left[-u_{c l}(t) c_{t}+u_{l l}(t) n_{t}-u_{l}(t)-u_{l k}(t) k_{t}\right] \\
U_{k}(t+1) & =u_{k}(t+1)+\Phi\left[u_{c k}(t+1) c_{t+1}-u_{l k}(t+1) n_{t+1}+u_{k k}(t+1) k_{t+1}+u_{k}(t+1)\right] .
\end{aligned}
$$

Finally, we examine the steady state of the economy. The steady state versions for equations (9)-(11) are

$$
\begin{equation*}
\theta=(1+\Phi) u_{c}+\Phi \underbrace{\left(u_{c c} c-u_{l c} n+u_{k c} k\right)}_{\equiv \eta_{1}}, \tag{12}
\end{equation*}
$$

$$
\begin{gather*}
\theta\left[1-\beta\left(F_{k}+1-\delta_{k}\right)\right]=\beta[(1+\Phi) u_{k}+\Phi(\underbrace{u_{c k} c-u_{l k} n+u_{k k} k}_{\equiv \eta_{2}})], \tag{13}\\
\theta F_{n}=(1+\Phi) u_{l}+\Phi \underbrace{\left(u_{c l} c-u_{l l} n+u_{k l} k\right)}_{\equiv \eta_{3}} . \tag{14}
\end{gather*}
$$

From equations (12) and (14), we solve for $\frac{(1+\Phi)}{\theta}$ and $\frac{\Phi}{\theta}$ as follows:

$$
\begin{equation*}
\frac{(1+\Phi)}{\theta}=\frac{\eta_{3}-F_{n} \eta_{1}}{u_{c} \eta_{3}-u_{l} \eta_{1}}, \frac{\Phi}{\theta}=\frac{u_{c} F_{n}-u_{l}}{u_{c} \eta_{3}-u_{l} \eta_{1}} . \tag{15}
\end{equation*}
$$

From the consumption Euler equation, we know that

$$
\begin{equation*}
F_{k}+1-\delta_{k}=\frac{1}{\beta}-\frac{u_{k}}{u_{c}}+\tau^{k} F_{k} \tag{16}
\end{equation*}
$$

Dividing both sides of (13) by θ and plugging (15) and (16) into it, we obtain

$$
\begin{equation*}
\tau^{k}=\frac{1}{u_{c} F_{k}} \underbrace{\frac{\left(u_{c} F_{n}-u_{l}\right)}{\left(u_{c} \eta_{3}-u_{l} \eta_{1}\right)}}_{=\frac{\Phi}{\theta}}\left(u_{k} \eta_{1}-u_{c} \eta_{2}\right) . \tag{17}
\end{equation*}
$$

From equation(15), the term $\left(u_{c} F_{n}-u_{l}\right) /\left(u_{c} \eta_{3}-u_{l} \eta_{1}\right)=\frac{\Phi}{\theta}$ is nonnegative, because the Lagrange multiplier Φ is nonnegative, while the insatiable utility function implies that θ is strictly positive. Notice that u_{c} and F_{k} are both strictly positive. Hence the sign of the limiting capital income tax is determined completely by the sign of the term $\left(u_{k} \eta_{1}-u_{c} \eta_{2}\right)$. To examine the optimal labor income tax, we combine (12) with (14), rearrange the terms, and obtain

$$
\begin{equation*}
u_{c} F_{n}-u_{l}=\frac{\Phi}{1+\Phi}\left(\eta_{3}-F_{n} \eta_{1}\right) \tag{18}
\end{equation*}
$$

Substituting the marginal productivity condition of the firm into $\frac{u_{l}(t)}{u_{c}(t)}=\left(1-\tau_{t}^{n}\right) w_{t}$ gives us

$$
\begin{equation*}
u_{c} F_{n}-u_{l}=\tau^{n} u_{c} F_{n} . \tag{19}
\end{equation*}
$$

Combining (18) with (19) leads to

$$
\begin{equation*}
\tau^{n}=\frac{1}{u_{c} F_{n}} \frac{\Phi}{1+\Phi}\left(\eta_{3}-F_{n} \eta_{1}\right) . \tag{20}
\end{equation*}
$$

Since $u_{c}>0, F_{n}>0$ and the multiplier Φ is nonnegative, the limiting optimal labor income tax depends on the value of the term in the bracket, listed in the theorem. \square

1.2 Proof of Proposition 4.2

Proof of Proposition 4.1. To solve the Ramsey problem, we construct the Lagrangian

$$
\begin{aligned}
L & =\sum_{t=0}^{\infty} \beta^{t}\left[\alpha u^{1}\left(c_{t}^{1}, k_{t}^{1}\right)+(1-\alpha) u^{2}\left(c_{t}^{2}, 1-n_{t}^{2}\right)\right]+\widehat{\Phi}\left[\sum_{t=0}^{\infty} \beta^{t}\left[u_{c}^{1}(t) c_{t}^{1}+u_{k}^{1}(t) k_{t}^{1}\right]-\widetilde{A}_{2}\right] \\
& +\sum_{t=0}^{\infty} \beta^{t} \mu_{t}\left[u_{l}^{2}(t) n_{t}^{2}-u_{c}^{2}(t) c_{t}^{2}\right]+\sum_{t=0}^{\infty} \beta^{t} \theta_{t}\left[F\left(k_{t}^{1}, n_{t}^{2}\right)-c_{t}^{1}-c_{t}^{2}-k_{t+1}^{1}+(1-\delta) k_{t}^{1}-g_{t}\right],
\end{aligned}
$$

where $\widehat{\Phi},\left\{\mu_{t}\right\}_{t=0}^{\infty}$ and $\left\{\theta_{t}\right\}_{t=0}^{\infty}$ are the Lagrange multipliers associated with the implementability condition, the optimality condition of the worker, and the resource constraint, respectively. The optimality conditions w.r.t $c_{t}^{1}, k_{t+1}^{1}, c_{t}^{2}$, and n_{t}^{2} are:

$$
\begin{gather*}
(\alpha+\widehat{\Phi}) u_{c}^{1}(t)+\widehat{\Phi} \underbrace{\widehat{\left[u_{c c}^{1}(t) c_{t}^{1}+u_{k c}^{1}(t) k_{t}^{1}\right]}}_{\equiv \varrho_{1}}=\theta_{t}, t \geq 1 \tag{21}\\
\beta\{(\alpha+\widehat{\Phi}) u_{k}^{1}(t+1)+\widehat{\Phi} \underbrace{\left[u_{k k}^{1}(t+1)\right.}_{\equiv \varrho_{2}} \underbrace{}_{\left.k_{t+1}^{1}+u_{c k}^{1}(t+1) c_{t+1}^{1}\right]}\}=\theta_{t}-\beta \theta_{t+1}\left[F_{k}(t+1)+1-\delta\right], t \geq 0 \tag{23}\\
\left(1-\alpha-\mu_{t}\right) u_{c}^{2}(t)+\mu_{t}^{[\underbrace{2}_{l c}(t) n_{t}^{2}-u_{c c}^{2}(t) c_{t}^{2}]}=\theta_{t}, t \geq 0 \tag{22}\\
\left(1-\alpha-\mu_{t}\right) u_{l}^{2}(t)+\mu_{t} \underbrace{\left[u_{l l}^{2}(t) n_{t}^{2}-u_{c l}^{2}(t) c_{t}^{2}\right]}_{\equiv \varrho_{4}}=\theta_{t} F_{n}(t), t \geq 0 \tag{24}
\end{gather*}
$$

Suppose that the economy converges to an interior steady state. Combining the steady state equations of the consumption Euler equation of the capitalist and (22) yields us

$$
\begin{equation*}
\tau^{k}=\frac{1}{F_{k}}\left[\frac{u_{k}^{1}}{u_{c}^{1}}-\frac{\alpha+\widehat{\Phi}}{\theta} u_{k}^{1}-\frac{\widehat{\Phi}}{\theta} \varrho_{2}\right] . \tag{25}
\end{equation*}
$$

Solving equation (21) for $(\alpha+\widehat{\Phi}) / \theta=\left(1-\widehat{\Phi} \varrho_{1} / \theta\right) / u_{c}^{1}$ and putting it into (25), we solve for

$$
\begin{equation*}
\tau^{k}=\frac{\widehat{\Phi}}{\theta} \frac{1}{u_{c}^{1} F_{k}}\left(u_{k}^{1} \varrho_{1}-u_{c}^{1} \varrho_{2}\right) \tag{26}
\end{equation*}
$$

To search for the limiting labor income tax, we combine equations (23) and (24) to derive

$$
\begin{equation*}
\frac{u_{l}^{2}}{u_{c}^{2}}=\frac{\left(\theta F_{n}-\mu \varrho_{3}\right)}{\left(\theta-\mu \varrho_{2}\right)} \tag{27}
\end{equation*}
$$

Substituting (27) into the optimality condition of the representative worker, we obtain the formula for the limiting labor income tax

$$
\begin{equation*}
\tau^{n}=\frac{\varrho_{4}-\varrho_{3} F_{n}}{F_{n}} \frac{\mu}{\theta-\mu \varrho_{3}} . \tag{28}
\end{equation*}
$$

The proof is completed.

